Zuschriften

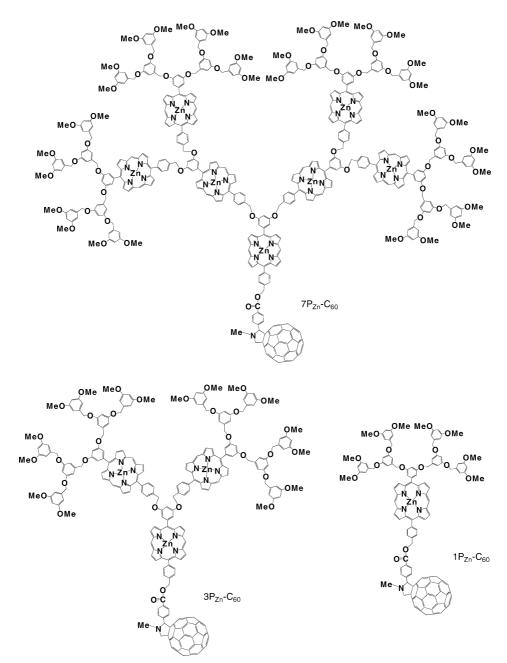
Photoinduced Electron Transfer

Fullerene-Terminated Dendritic Multiporphyrin Arrays: "Dendrimer Effects" on Photoinduced Charge Separation

Myung-Seok Choi, Takuzo Aida,* Hongxia Luo, Yasuyuki Araki, and Osamu Ito*

The development of light-harvesting antenna molecules for visible photons is one of the important subjects in the basic issue of solar-energy conversion in natural photosynthesis and also to their potential applications to molecular electronics.^[1] Recently, we reported light-harvesting dendritic zinc porphyrin arrays which can efficiently capture visible photons and channel the excitation energy to the focal core. [2,3] This observation prompted us to integrate such dendritic dye molecules as light-harvesting antennas into electron-transfer relay systems. Here we report the molecular design and photoinduced electron-transfer properties of a series of fullerene-terminated dendritic zinc-porphyrin arrays nP_{Zn} -C₆₀ (Scheme 1).^[4] Covalently linked porphyrin–C₆₀ dyads (P-C₆₀) have attracted a great deal of attention as novel photoinduced electron-transfer units,^[5-7] in which the chargeseparated (CS) state (P+-C-0, which results from electron transfer from the porphyrin moiety to C₆₀, can take advantage of the low reorganization energy of C₆₀. Thus, the present study featuring C₆₀-terminated multiporphyrin arrays nP_{Zn}-C₆₀ can make use of the well-established photochemistry of covalently linked porphyrin-C₆₀ dyads. Herein, we highlight a unique effect of a large dendritic array (7P_{Zn}) on the lifetime of the CS state.

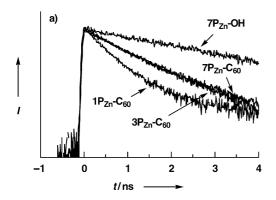
The arrays nP_{Zn} - C_{60} (n=1, 3, and 7) were synthesized from hydroxy-terminated zinc-porphyrin dendrons (nP_{Zn} -OH) and a carboxylic acid appended C_{60} derivative (C_{60} - CO_2H), by using azodicarboxylic acid diethyl ester as a condensation agent, and unambiguously characterized by 1H NMR and UV/Vis spectroscopies, as well as with MALDITOF-MS spectrometry. $^{[8]}$ For example, a solution of $^7P_{Zn}$ - $^7C_{60}$ in benzonitrile (PhCN) showed an intense Soret absorption band at 417 nm arising from the zinc-porphyrin units and a weak $^7C_{60}$ absorption band at 700 nm. $^{[8]}$ Comparison of this spectral profile with those of $^7P_{Zn}$ -OH and $^7C_{60}$ -CO₂H as reference compounds showed only a slight broadening of the

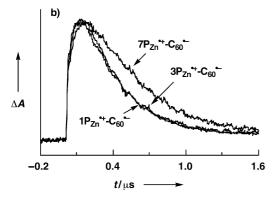

[*] Prof. Dr. T. Aida, Dr. M.-S. Choi
ERATO Nanospace Project
Japan Science and Technology Corporation (JST)
2-41 Aomi, Koto-ku, Tokyo 115-0064 (Japan)
Fax: (+81) 3-5841-7310
E-mail: aida@macro.t.u-tokyo.ac.jp
Prof. Dr. O. Ito, Dr. H. Luo, Dr. Y. Araki
Institute of Multidisciplinary Research for Advanced Materials
Tohoku University
Katahira 2-1-1, Aoba-ku, Sendai, 980-8577 (Japan)
Fax: (+81) 22-217-5608
E-mail: ito@tagen.tohoku.ac.jp

E-mail: ito@ta

DOI: 10.1002/ange.200351460

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.


Scheme 1. Schematic structures of nP_{Zn} -C₆₀.


Soret absorption band (difference in the full-width at half-maximum ($\Delta FWHM$) = +54 cm⁻¹) without any shift, which indicates there is a negligibly weak ground-state interaction between the zinc-porphyrin units and the C_{60} terminus. Although $3P_{Zn}$ - C_{60} and $1P_{Zn}$ - C_{60} showed essentially the same characteristics in the absorption spectra as $7P_{Zn}$ - C_{60} , the Soret absorption band became broader (FWHM increases from 572 to 947 cm⁻¹) as the generation number of the dendritic wedge increased, which suggests there is an electronic interaction among the P_{Zn} moieties in $7P_{Zn}$ - C_{60} .

Excitation of a solution of $1P_{Zn}\text{-}C_{60}$ in PhCN at 544 nm resulted in a zinc-porphyrin fluorescence with two major bands at 590 and 645 nm, while no fluorescence was detected from the C_{60} terminus. $^{[8]}$ The fluorescence of $1P_{Zn}\text{-}C_{60}$ was clearly quenched by $84\pm1\,\%$ relative to the reference system

of $1P_{\rm Zn}$ -OH. As expected, the one-generation-higher $3P_{\rm Zn}$ -C₆₀, when $3P_{\rm Zn}$ -OH was used as the reference, showed a lower quenching efficiency ($60\pm2\,\%$) than $1P_{\rm Zn}$ -C₆₀. ^[8] On the other hand, the quenching efficiency of $7P_{\rm Zn}$ -C₆₀, the largest homologue of the series, stayed at the same level as that of $3P_{\rm Zn}$ -C₆₀ ($62\pm2\,\%$; $7P_{\rm Zn}$ -OH as reference). ^[8] A similar trend was observed for the analysis by time-resolved spectroscopy. Excitation of solutions of $nP_{\rm Zn}$ -C₆₀ (n=1,3, and 7) in PhCN under argon at 22 °C at 410 nm resulted in the fluorescence monitored at 610 nm (Figure 1a) having dual-exponential decay characteristics, where the relatively long-lived fluorescing components are assignable to residual components after the photochemical communication between the $nP_{\rm Zn}$ and C₆₀ units. ^[8] The average rate constant for the fluorescence decay ($k_{\rm CS} = [1/\tau_{\rm FL}^{\rm av}]_{\rm sample} - [1/\tau_{\rm FL}]_{\rm ref}$) became smaller by a factor of

Zuschriften

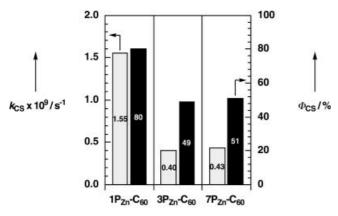


Figure 1. a) Fluorescence decay profiles of nP_{Zn} - C_{60} (n=1, 3, and 7) at 610 nm upon excitation at 410 nm, and b) absorption decay profiles of C_{60}^- at 1020 nm, generated upon excitation of nP_{Zn} - C_{60} (n=1, 3, and 7) at 532 nm, in PhCN at 22 °C under argon.

four as the zinc-porphyrin array increased from $1P_{\rm Zn}$ - C_{60} $(1.55\times10^9~{\rm s^{-1}})$ to $3P_{\rm Zn}$ - C_{60} $(0.40\times10^9~{\rm s^{-1}})$; Figure 2, gray bars). On the other hand, the $k_{\rm CS}$ value $(0.43\times10^9~{\rm s^{-1}})$ of the largest homologue of the family $(7P_{\rm Zn}$ - $C_{60})$ was comparable to that of $3P_{\rm Zn}$ - C_{60} , in spite of the fact that $7P_{\rm Zn}$ - C_{60} has a greater number of the zinc-porphyrin units located away from the C_{60} terminus.

We found that the fluorescence quenching observed arises from a photoinduced electron-transfer reaction from the zinc-porphyrin units to the C_{60} terminus. Formation of an ion pair $(P_{Zn}^+-C_{60}^-)$ was confirmed by means of picosecond time-

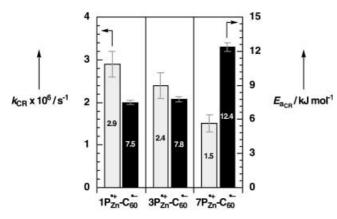


Figure 2. Fluorescence decay rate constants (k_{CS}) at 610 nm and quantum efficiencies of the charge separation (Φ_{CS}) of nP_{Zn} - C_{60} (n=1, 3, and 7) upon excitation at 410 nm in PhCN at 22°C under argon.

resolved absorption spectroscopy. For example, excitation of a solution of $7P_{Zn}$ -C₆₀ in PhCN at 388 nm with a 150-fs laser pulse resulted in an absorption band at 450 nm corresponding to the singlet-excited state ¹P_{Zr}* which decayed with a rate constant of 0.50×10^9 s⁻¹.[8] This value is almost identical to the fluorescence decay rate constant (k_{CS}) observed for $7P_{Zn}$ - C_{60} $(0.43 \times 10^9 \,\mathrm{s}^{-1})$ in PhCN. The transient absorption spectroscopy also showed a rise of the P'+_{Zn} absorption at 650 nm, whose rate constant (0.50 × 10⁹ s⁻¹) was again in agreement with the $k_{\rm CS}$ value of $7P_{\rm Zn}$ - C_{60} . The characteristic absorption band of the C_{60}^- species appeared at $1020 \text{ nm.}^{[8]}$ These observations clearly indicate that the photoexcitation of the P_{Zn} units in 7P_{Zn}-C₆₀ is followed by an electron transfer from the resultant ${}^{1}P_{Zn}^{*}$ species to the C_{60} terminus to generate a charge-separated (CS) state (P_{Zn}-C₆₀). Hence, as shown in Figure 2, the rate constants for fluorescence decay (k_{CS} ; gray bars) allowed evaluation of the quantum efficiencies of nP_{Z_n} C_{60} (n = 1, 3, and 7) for charge separation (Φ_{CS} , black bars).^[8] Interestingly, the Φ_{CS} value of $7P_{Zn}$ - C_{60} (51%), which is smaller than that of $1P_{\rm Zn}\mbox{-}C_{\rm 60}$ (80%), is comparable to the $\Phi_{\rm CS}$ value of lower generation $3P_{\rm Zn}$ - C_{60} (49%). This trend suggests that the large dendritic 7P_{Zn} array may serve as a better energy funnel than the lower generation $3P_{Zn}$, and allow the excitation energy to flow more efficiently into the focal core.

We investigated the charge recombination (CR) process by nanosecond time-resolved absorption spectroscopy of nP_{Zn} -C₆₀ (n = 1, 3, and 7) at 600–1200 nm. Excitation of a solution of $7P_{Zn}$ - C_{60} in PhCN at 532 nm with a 6-ns laser pulse gave an absorption band at 1020 nm, which correspond to C₆₀. and bands centered at 850 and 740 nm, which correspond to the triplet-excited ${}^3P_{Zn}^*$ and ${}^3C_{60}^*$ species,^[9] respectively.^[8] The time profile of the absorption corresponding to C_{60}^- at 1020 nm (Figure 1b) was analyzed for determination of the lifetime of the charge-separated state (τ_{CS}) , and the decay curve nicely fitted with dual-exponential components. The slow-decaying component corresponded to the triplet-excited species, while a radical ion pair P_{Zn}⁺-C₆₀ was identified as the fast-decaying component, whose $\tau_{\rm CS}$ value was evaluated to be as long as $0.66 \,\mu s$ in PhCN at 22 °C. Very interestingly, $3P_{Zn}$ -C₆₀ and 1P_{Zn}-C₆₀ also showed similar transient absorption spectral characteristics in PhCN, but their τ_{CS} values (0.41 and 0.35 μ s, respectively) were clearly shorter than that of $7P_{Zn}$ -C₆₀. Accordingly, 7P_{Zn}-C₆₀ showed a smaller CR rate constant $(k_{\rm CR} = (1.5 \pm 0.2) \times 10^6 \,\rm s^{-1})$ than $1P_{\rm Zn}$ - C_{60} $((2.9 \pm 0.3) \times 10^6 \,\rm s^{-1})$ and $3P_{Zn}$ -C₆₀ ((2.4 ± 0.3) × 10⁶ s⁻¹; Figure 3, gray bars).

We consider that the electron-transfer reaction in $nP_{\rm Zn}$ - C_{60} most likely takes place from the zinc-porphyrin unit directly connected to the C_{60} terminus, while the energy for the electron transfer is acquired by the dendritic antenna. We also propose another interesting role of the large dendritic antenna in the electron-transfer event. From the slowest back electron transfer process, observed for the largest dyad $7P_{\rm Zn}$ - C_{60} , we assume that the $P_{\rm Zn}^+$ species, which is generated at the focal point of $7P_{\rm Zn}$ - C_{60} upon electron transfer, should move away from the C_{60}^- terminus towards the periphery by an intramolecular hole hopping mechanism. [8] In relation to this proposal, the first oxidation potential $(E_{\rm ox}^{\rm l})$ of $7P_{\rm Zn}$ - C_{60} (0.29 V) was lower than those of $1P_{\rm Zn}$ - C_{60} (0.33 V) and $3P_{\rm Zn}$ -

Figure 3. Charge recombination rate constants (k_{CR} , 22 °C) and activation energies (E_a^{CR}) for nP_{T}^+ - C_{60}^- (n = 1, 3, and 7) in PhCN under argon.

 C_{60} (0.31 V).^[10] As already suggested from the analysis of the band widths in the absorption spectra, this result may again indicate a large electronic interaction among the densely packed chromophores in $7P_{Zn}$ - C_{60} . We also investigated the temperature dependencies of the k_{CR} values of nP_{Zn} - C_{60} (n=1,3, and 7), which gave activation energies (E_a) for the charge recombination process (Figure 3, black bars). Quite interestingly, the E_a value for $7P_{Zn}$ - C_{60} (12.4 kJ mol⁻¹) was much greater than those for the lower generation homologues (7.5 and 7.8 kJ mol⁻¹ for $1P_{Zn}$ - C_{60} and $3P_{Zn}$ - C_{60} , respectively). This trend is consistent with the above proposal, since a thermally activated conformational motion of the dendritic chromophore array possibly allows folding of the large $7P_{Zn}^+$ - C_{60}^- dyad, thereby facilitating the collision of even topologically distant P_{Zn}^+ and C_{60}^- species.

In conclusion, we have demonstrated with studies on the photoinduced electron transfer properties of the C_{60} -terminated dendritic zinc porphyrin arrays (nP_{Zn} - C_{60} ; n=1,3, and 7) that the large dendritic antenna ($7P_{Zn}$) not only harvests visible light for the electron transfer to the C_{60} terminus, but also retards the back-electron-transfer process. These results indicate a new potential of dendronized dye molecules for the efficient conversion of solar energy into chemical potentials. Application of fullerene-terminated dendritic multiporphyrin arrays to solar cells is one of the subjects worthy of further investigation.

Experimental Section

 $1P_{Zn}$ - C_{60} , $3P_{Zn}$ - C_{60} , and $7P_{Zn}$ - C_{60} were prepared by coupling of the hydroxy-terminated zinc porphyrin dendrons $1P_{Zn}$ -OH, $3P_{Zn}$ -OH, and $7P_{Zn}$ -OH with C_{60} - CO_{2} H, respectively. Time-resolved fluorescence spectra were measured by a single-photon-counting method using a second harmonic generation (SHG, 410 nm) of a Ti:sapphire laser (Spectra-Physics, Tsunami 3950-L2S, FWHM=1.5 ps) and a streak-scope (Hamamatsu Photonics, C43334-01) equipped with a polychromator (Action Research, SpectraPro 150) as an excitation source and a detector, respectively. Picosecond transient absorption spectra were recorded by a pump and probe method, whereby samples were excited with a second harmonic generation (SHG, 388 nm) of an output from a femtosecond Ti:sapphire regenerative amplifier seeded by SHG of an Er-doped fiber (Clark-MXR CPA-2001 plus, 1 kHz, FWHM=150 fs). The excitation light was depolarized, while the

monitor white light was generated by focusing the fundamental of the laser light on a flowing D₂O/H₂O cell. The transmitted monitor light was detected with a dual MOS linear image sensor (Hamamatsu Photonics, C6140) or a InGaAs photodiode array (Hamamatsu Photonics, C5890-128). Nanosecond transient absorption spectroscopy was carried out using SHG (532 nm) of a Nd:YAG laser (Spectra-Physics, Quanta-Ray GCR-130, FWHM = 6 ns) as an excitation source. For obtaining transient absorption spectra in the near-IR region (600-1200 nm), the monitor light from a pulsed Xe lamp was detected with a Ge-APD (Hamamatsu Photonics, B2834). All the samples in a quartz cell (1×1 cm) were deaerated by bubbling the solutions with argon for 15 min. Cyclic voltammograms were obtained by using a conventional three-electrode system on a BAS CV-50W potentiostat/galvanostat. A platinum disk electrode was used as a working electrode, while a platinum wire served as a counter electrode. An Ag/AgCl electrode was used as a reference electrode. The potentials were referenced to an internal ferrocene/ferrocenium redox couple.

Received: March 24, 2003 Revised: June 17, 2003 [Z51460]

Keywords: dendrimers · electron transfer · fullerenes · photosynthesis · porphyrinoids

- a) D. Gust, T. A. Moore in *The Porphyrin Handbook, Vol. 8* (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, **2000**, p. 153; b) H. Imahori, Y. Sakata, *Adv. Mater.* **1997**, *9*, 537; c) D. M. Guldi, M. Prato, *Acc. Chem. Res.* **2000**, *33*, 695; d) D. M. Guldi, *Chem. Commun.* **2000**, 321.
- [2] a) M.-S. Choi, T. Aida, I. Yamazaki, T. Yamazaki, Angew. Chem. 2001, 113, 3294; Angew. Chem. Int. Ed. 2001, 40, 3194; b) M.-S. Choi, T. Aida, I. Yamazaki, T. Yamazaki, Chem. Eur. J. 2002, 8, 2667
- [3] M.-S. Choi, T. Yamazaki, I. Yamazaki, T. Aida, Angew. Chem. 2003, 115, in press; Angew. Chem. Int. Ed. 2003, 42, in press, and references therein.
- [4] J.-F. Nierengarten, N. Armaroli, G. Accorsi, Y. Rio, J.-F. Eckert, Chem. Eur. J. 2003, 9, 37, and references therein.
- [5] a) P. A. Liddell, D. Kuciauskas, J. P. Sumida, B. Nash, D. Nguyen, A. L. Moore, T. A. Moore, D. Gust, J. Am. Chem. Soc. 1997, 119, 1400; b) D. Carbonera, M. Di Valentin, C. Corvaja, G. Agostini, G. Giacometti, P. A. Liddell, D. Kuciauskas, A. L. Moore, T. A. Moore, D. Gust, J. Am. Chem. Soc. 1998, 120, 4398; c) M. Fujitsuka, O. Ito, H. Imahori, K. Yamada, H. Yamada, Y. Sakata, Chem. Lett. 1999, 721; d) D. Kuciauskas, P. A. Liddell, S. Lin, S. G. Stone, A. L. Moore, T. A. Moore, D. Gust, J. Phys. Chem. B 2000, 104, 4307.
- [6] a) D. Kuciauskas, P. A. Liddell, S. Lin, T. E. Johnson, S. J. Weghorn, J. S. Lindsey, A. L. Moore, T. A. Moore, D. Gust, J. Am. Chem. Soc. 1999, 121, 8604; b) C. Luo, D. M. Guldi, H. Imahori, K. Tamaki, Y. Sakata, J. Am. Chem. Soc. 2000, 122, 6535; c) D. M. Guldi, C. Luo, A. Swartz, M. Scheloske, A. Hirsch, Chem. Commun. 2001, 1066; d) H. Imahori, K. Tamaki, Y. Araki, Y. Sekiguchi, O. Ito, Y. Sakata, S. Fukuzumi, J. Am. Chem. Soc. 2002, 124, 5165; e) G. Kodis, P. A. Liddell, L. Garza, P. C. Clausen, J. S. Lindsey, A. L. Moore, T. A. Moore, D. Gust, J. Phys. Chem. A 2002, 106, 2036.
- [7] Gust and co-workers have reported the photochemical properties of a fullerene-appended star-shaped porphyrin pentamer (see refs. [6a] and [6e]).
- [8] See Supporting Information.
- [9] The decay of this absorption band was accelerated on introduction of O₂ as a triplet quencher.
- [10] $[nP_{Zn}-C_{60}] = 0.1 \text{ mm}$ in PhCN containing 0.05 M Bu₄NClO₄ as a supporting electrolyte; scan rate = 0.1 V s^{-1} .